Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures

Given a positive function F on S which satisfies a convexity condition, for 1 ≤ r ≤ n, we define the r-th anisotropic mean curvature function H r for hypersurfaces in R which is a generalization of the usual r-th mean curvature function. We prove that a compact embedded hypersurface without boundary in R with H r = constant is the Wulff shape, up to translations and homotheties. In case r = 1, ...

متن کامل

Mean Value Representations and Curvatures of Compact Convex Hypersurfaces

It is shown that the kernels for mean value representations of points in R in terms of the integrals over piecewise smooth hypersurfaces are divergence free vector fields defined by homogeneous functions of degree −(n+1), whose restrictions to the unit sphere are positive and orthogonal to the first harmonics. By Minkowski problem, such a function is the reciprocal of the composition of the Gau...

متن کامل

Stability of Hypersurfaces with Constant R-th Anisotropic Mean Curvature

Given a positive function F on S which satisfies a convexity condition, we define the r-th anisotropic mean curvature function H r for hypersurfaces in R n+1 which is a generalization of the usual r-th mean curvature function. Let X : M → R be an n-dimensional closed hypersurface with H r+1 =constant, for some r with 0 ≤ r ≤ n− 1, which is a critical point for a variational problem. We show tha...

متن کامل

Spacelike hypersurfaces in de Sitter space with constant higher-order mean curvature

ing from (2.6), we obtain that ∫ M ( H1Hr −Hr+1 〈N ,a〉dV = 0. (3.1) We know from Newton inequality [2] that Hr−1Hr+1 ≤ H2 r , where the equality implies that k1 = ··· = kn. Hence Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr−1−Hr ) . (3.2) It derives from Lemma 2.1 that 0≤H1/r r ≤H1/r−1 r−1 ≤ ··· ≤H1/2 2 ≤H1. (3.3) Thus we conclude that Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr1 −Hr ≥ 0, (3.4) and if r ≥ 2, the equalities h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2009

ISSN: 0022-2518

DOI: 10.1512/iumj.2009.58.3515